Designing a Local Molecular Database to Facilitate the Identification of Mammal Species Habitats in Iran

Document Type : Original Article

Authors

1 MSc, Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

2 Associate Professor, Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

3 Professor, Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran

4 Ph. D. School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia

Abstract

Abstract
Identification and protection of habitats are essential to protect wildlife. Identifying the habitats used by some mammal species with low population density requires the application of practical techniques in this field. Molecular studies on mammalian remains in nature and genome sequencing have facilitated the process of identifying habitats as well as monitoring their populations. Therefore, designing and launching a local molecular database to identify the sequences obtained from mammalian remains and ultimately facilitate the identification of their habitats is the main purpose of this study. For this purpose, some Iranian mammal species that were in conservation categories according to national laws or IUCN criteria, as well as the keystone species, were selected for this study. The non-invasive sampling of different mammalian species was performed from all over Iran and two gene regions including D-loop and COXI were chosen for sequencing. Additional sequences of the selected species belonging to D-loop, COXI, and Cyt b mitochondrial genes were also obtained from NCBI and a Local Molecular Database (LMD) was prepared. The performance of the LMD was determined using a known query sequence, and the database recognized the query sequence correctly. This database potentially enables the correct identification of the studied mammals’ habitats by identifying sequences belonging to species that remain in their habitats and resolves the existing challenges in the field of habitat identification and conservation planning.

Keywords


Akrim, F., Mahmood, T., Max, T., Nadeem, M.S., Qasim, S. & Andleeb, S. (2018). Assessment of bias in morphological identification of carnivore scats confirmed with molecular scatology in the north-eastern Himalayan region of Pakistan. Peer Journal, 6, e5262.
Aksöyek, E., Ibis, O., Özcan, S., Moradi, M. & Tez, C., (2016). DNA barcoding of three species (Canis aureus, Canis lupus, and Vulpes vulpes) of Canidae. Mitochondrial DNA part A, 28(5), 1-9.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search program. Nucleic Acid Research, 25(17), 3389-3402.
Barea-Azcón, J. M., Virgós, E., Ballesteros-Duperón E., Moleón, M. & Chirosa, M. (2007). Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodiversity and Conservation, 16(4), 1213-1230.
Battersby, J. E. & Greenwood, J. J. D. (2004). Monitoring terrestrial mammals in the U.K: past, present, and future, using lessons from the bird world. Mammal Review, 34(1-2), 3-29.
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W. & Bruyn, M. D. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29(6), 358-367.
Borisenko, A. V., Lim, B. K., Ivanova, N. V., Hanner, R. H. & Hebert, P. D. N. (2008). DNA barcoding in surveys of small mammal communities: a field study in Suriname. Molecular Ecology Resource, 8(3), 471-479.
Burkardt, H. J. (2000). Standardization and Quality Control of PCR Analyses. Clinical Chemistry and Laboratory Medicine, 38(2), 87-91.
Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E. & Boutin, S. (2015). Review: wildlife camera trapping: a review and recommendation for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675-685.
Clare, E. L., Lim, B. K., Engstrom, M. D., Eger, J. L. & Hebert, P. D. N. (2007). DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7(2), 184-190.
Delidow, B. C., Lynch, J. P., Peluso, J. J. & White, B. A. (1993). Polymerase Chain Reaction: Basic Protocols. Methods in Molecular Biology, 15, 1-29.
Farhadinia, M. S., Hunter, L. T. B., Jourabchian, A., Hosseini-Zavarei, F., Aakbari, H., Ziaie, H., Schaller, G. B. & Jowkar, H. (2017). The critically endangered Asiatic cheetah Acinonyx jubatus venaticus in Iran: a review of the recent distribution, and conservation status. Biodiversity and Conservation, 26(5), 1027-1046.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoej, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.
Fumagalli, L., Pope, L. C., Taberlet, P. & Moritz, C. (1997). Versatile primers for the amplification of the mitochondrial DNA control region in marsupials. Molecular Ecology, 6(12), 1199-1201.
Hajibabaei, M., Singer, G. A. & Hickey, D. A. (2006). Benchmarking DNA barcodes: an assessment using available primate sequences. Genome, 49(7), 851-854.
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Journal of Proceedings of the Royal Society, 270(1512), 313-322.
Hu, G. & Kurgan, L. (2019) Sequence similarity searching. Current Protocols in Protein Science, 95(1), e71.
Ishige, T., Miya, M., Ushio, M., Sado, T., Ushioda, M., Maebashi, K., Yonechi, R., Lagan, P. & Matsubayashi, H. (2017). Tropical-forest mammals as detected by environmental DNA at natural saltlicks in Borneo. Biological Conservation, 210, 281-285.
Kefi, R., Hsouna, S., Beraud-Colomb, E. & Abdelhak, S. (2009). Mitochondrial DNA: properties and applications. Archieves de I'Institut Pasteur de Tunis, 86(1-4), 3-14.
Khedkar, G. D., Abhayankar, S. B., Nalage, D., Ahmed, S. N. & Khedkar, C. D. (2014). DNA barcode-based wildlife forensics for resolving the origin of claw samples using a novel primer cocktail. Mitochondrial DNA Part A, 27(6), 3932-3935.
Kress, W. J., García-Robledo, C., Uriarte, M. & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution, 30(1), 25-35.
Kumar, U. S., Ratheesh, R. V., Thomas, G. & George, S. (2012). The Use of DNA barcoding in wildlife forensics: a study of sambar deer (Rusa unicolor). Forest Science and Technology, 8(4), 224-226.
Laguardia, A., Wang, J., Shi, F. L., Shi, K. & Riordan, P. (2015). Species identification refined by molecular scatology in a community of sympatric carnivores in Xinjiang, China. Zoological Research, 36(2), 72-78.
Lorenz, J. G., Jackson, W. E., Beck, J. C. & Hanner, R. (2005). The problems and promise of DNA barcodes for species diagnosis of primate biomaterials. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1869-1878.
Meiklejohn, C., Montooth, K. & Rand, D. (2007). Positive and negative selection on the mitochondrial genome. Trends in Genetics, 23(6), 259-263.
Mwale, M., Dalton, D. L., Jansen, R., Roelofse, M., Pietersen, D., Mokgokong, P. S. & Kotze, A. (2017). Forensic application of DNA barcoding for identification of illegally traded African pangolin Scales. Genome, 60(3), 272-284.
Nowak, C., Büntjen, M., Steyer, K. & Frosch, C. (2014). Testing mitochondrial markers for noninvasive genetic species identification in European mammals. Conservation Genetics Resources, 6(1), 41-44.
Parkanyi, V., Ondruska, L., Vasicek, D. & Slamecka, J. (2014). Multilevel D-loop PCR identification of hunting game. Applied Translational Genomics, 3(1), 1-7.
Ratnasingham, S. & Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355-364.
Robins, J., Hingston, M., Matisoo-Smith, E. & Ross, H. (2007) Identifying Rattus species using mitochondrial DNA. Molecular Ecology Notes, 7(5), 717-729.
Sadlier, L. M. J., Webbon, C. C., Baker, P. J. & Harris, S. (2004) Methods for monitoring red foxes Vulpes vulpes and badgers Meles meles: are field signs the answer? Mammal Review, 34(1–2), 75-98.
Smith, D. R. (2016). The past, present, and future of mitochondrial genomics: have we sequenced enough mtDNA? Briefings in Functional Genomics, 15(1), 47-54.
Taberlet, P. & Bouvet, J. (1994). Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proceeding of the Royal Society B: Biological Sciences, 225(1344), 195-200.
Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793.
Thomsen, P. F. & Willerslev, E. (2015). Environmental DNA, an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18.
Wheat, R. E., Allen, J. M., Miller, S. D. L., Wilmers, C. & Levi, T. (2016). Environmental DNA from residual saliva for efficient noninvasive genetic monitoring of Brown Bears (Ursus arctos). PLoS One, 11(11), e0165259.
Whitworth, T. L., Dawson, R. D., Magalon, H. & Baudry, E. (2007) DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceeding of The Royal Society B: Biological Sciences, 274(1619), 1731-1739.
Yacoub, H. A., Fathi, M. M. & Mahmoud, W. M. (2013). DNA barcode through cytochrome b gene information of mtDNA in native chicken strains. Mitochondrial DNA, 24(5), 528-537.
Yu, Y., Gertz, E. M., Agarwala, R., Schäffer, A. A. & Altschul, S. F. (2006) Retrieval accuracy, statistical significance, and compositional similarity in protein sequence database searches. Nucleic Acids Research, 34(20), 5966-5973.