فیلوژنی و تکامل صفت‌ها در سردۀ Geum L. از تیرۀ گل‌سرخیان در ایران: شواهدی بر اساس تجزیه‌وتحلیل‌های توالی DNA کلروپلاستی و هسته‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه زیست‌شناسی، دانشکده علوم، دانشگاه گیلان، رشت ، ایران

2 دانشجوی کارشناسی ارشد بیوسیستماتیک اکولوژی، دانشکده علوم، دانشگاه گیلان، رشت، ایران

3 دانشجوی دکتری بیوسیستماتیک اکولوژی، دانشکده علوم، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در پژوهش حاضر، فیلوژنی مولکولی سردۀ Geum L. از ایران شامل 5 گونۀ G. kokanicum، G. iranicum،
G. heterocarpum، G. rivale و G. urbanum متعلق به دو زیرسردۀ (Orthostylus Fisch and Mey و(Geumبا استفاده از داده‌های حاصل از توالی nrDNA ITS، cpDNA rpl32-trnL(UAG) و ترکیبی مطالعه شدند. تجزیه‌وتحلیل‌های فیلوژنی با استفاده از روش‌های بیشینه صرفه‌جویی تعبیه‌شده در نرم‌افزار PAUP*، بایزین با استفاده از نرم‌افزار MrBayes و بیشینه درست‌نمایی در نرم‌افزار RaxmlGUI اجرا شدند. نتایج تجزیه‌وتحلیل بیشینه صرفه‌جویی به تشکیل درخت مرکزی ITS ریبوزوم هسته‌ای منجر شد که دارای شاخۀ اصلی A حامل گونه‌های Geum و سرده‌های مرتبطِ نزدیک به آن (به‌ویژه Erythrocoma Greene، Acomastylis Greene، Coluria R. Br. و Novosieversia F. Bolle) در دو گروه تک‌نیاست. در تمام درختان حاصل، دو گونه از زیرسردۀ Geum گروهی تک‌نیا تشکیل دادند؛ در حالی‌که گونه‌های زیرسردۀ Orthostylus به‌شکل تری‌تومی )در تجزیه‌وتحلیل داده‌های (nrDNA ITS و یا گروه تک‌نیا )در تجزیه‌وتحلیل داده‌های کلروپلاستی و ترکیبی( ظاهر شدند. نتایج بررسی حاضر نشان دادند فیلوژنی مولکولی این سرده‌ها به‌شدت از دورگه‌گیری و پلی‌پلوئیدی (آلوپلی‌پلوئیدی) تأثیر می‌گیرد. یافته‌های بررسی حاضر محدودۀ سیستماتیک گونه‌های این سرده در فلورا ایرانیکا و فلور ایران را حمایت می‌کنند. در بررسی حاضر، تکامل صفت‌های ریخت‌شناسی میوه، تزیینات اگزین دانۀ گرده، ریزریخت‌شناسی بذر و صفت‌های تشریحی دمبرگ ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phylogeny and Character Evolution of the Genus Geum L. (Family Rosaceae) from Iran: Evidence from Analyses of Plastid and Nuclear DNA Sequences

نویسندگان [English]

  • Marzieh Beygom Faghir 1
  • Reyhaneh Pourmojib 2
  • Robabeh Shahi Shavvan 3
1 Assistant Professor, Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
2 M. S. Student of Ecological systematic_ plant biology, Faculty of Science, University of Guilan, Rasht, Iran
3 Ph. D. Student of Ecological systematic_ plant biology, Faculty of Biology, University of Tarbiat Modares, Tehran, Iran
چکیده [English]

Abstract
In the present study, molecular phylogeny of the genus Geum L. in Iran, including 5 species
(G. kokanicum, G. iranicum G. heterocarpum, G. rivale and G. urbanum) from two subgenera (Orthostylus Fisch & Mey and Geum) were studied using nrDNA ITS and cpDNA rpl32-trnL(UAG)and combined sequence data. Phylogenetic analyses were performed using maximum parsimony approach as implemented in PAUP*, Bayesian method using MrBayes programm and Maximum Likeliood analysis using RaxmlGUI software. The parsimony analysis led to the formation of nrDNA ITS majority-rule consensus tree with a main clade (A), comprising Geum species and its related genera especially Coluria R. Br., Acomastylis Greene, Erythrocoma Greene and Novosieversia F. Bolle., arranged in two monophyletic groups. In all obtained trees, the two representatives of subgenus Geum completely were resolved and formed monophyletic group. While 3 species of the subgenus Orthostylus formed both tritomy (in nrDNA ITS sequence data analysis) and monophyletic group (in cpDNA rpl32-trnL (UAG) and combined sequence dataanalysis). The results of the present study showed that phylogenetic relationship of the genus is strongly under the influence of hybridization and polyploidy (allopolyploidy). The current result support circumscriptions of the genus presented in flora Iranica and flora of Iran. In this study, the evolutionary trends of fruits morphology, exin sculpturing, seed micromorphology and petiole anatomy were evaluated.
Key words:

کلیدواژه‌ها [English]

  • Phylogeny
  • Geum
  • Rosaceae
  • nrDNA ITS
  • cpDNA rpl32-trnL (UAG)
منابع

Arens, P., Durka, W., Wernke-Lenting, J. W. and Smulders, M. J. M. (2004) Isolation and characterization of microsatellite loci in Geum urbanum (Rosaceae) and their transferability within the genus Geum. Molecular Ecology 4: 209-212.

Bolle, F. )1933( Eine U bersicht u¨ber die Gattung Geum L. und die hrnahestehenden Gattungen. Feddes Repertorium 72: 1-119.

Edgar, R. C. (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.

Eriksson, T., Donoghue, M. J. and Hibbs, M. S. (1998) Phylogenetic analysis of Potentilla using DNA sequences of nuclear ribosomal internal transcribed spacer (ITS), and its implications for the classification of Rosoideae (Rosaceae). Plant Systematics and Evolution 211: 155-179.

Eriksson, T., Hibbs, M. S., Yoder, A. D., Delwiche, C. F. and Donoghue, M. J. (2003) Phylogenetic of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacer (ITS) of nuclear ribosomal and the trnL-F region of chloroplast DNA. International Journal of Plant Science 164(2):197-211.

Faghir, M. B.,Armodian, M., and Shahi Shavvon, R. (2015) Micro-Macro morphology of the genus Geum L. (Rosaceae) in IRAN and their taxonomic significance. Iranian Journal of Botany 21(2): 103-117.

Faghir, M. B.,Ashori, F. and Mehrmanesh, A. (2017) Comparative leaf and petiole anatomy and micro morphology of the Genus Geum (Rosaceae) from Iran. Iranian Journal of Plant Biology 31: 45-58-117.

Focke, W. O. (1894) Rosaceae. In: Die Natu¨rlichen Pflanzenfamilien (Ed. Engler, A.) 3: 1-60. Wilhelm Engelmann, Leipzig.

Gajewski, W. (1958) Evolution in the genus Geum. Evolution 13: 378-388.

Gehrke, B., Bräuchler, C., Romoleroux, K., Lundberg, M., Heubl, G. and Eriksson, T. (2008) Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution 47: 1030-1044.

Gelman, A. and Rubin, B. (1992) Inference from ilterative simulation using multiple sequences. Statistical Science 7: 457-472.

Helfgott, D. M., Francisco-Ortega, J., Santos-Guerra, A., Jansen, R. K. and Simpson, B. B. (2000) Biogeography and breeding system evolution of the woody bencomia Alliance (Rosaceae) in macaronesia based on ITS Sequence Data. Systematic Botany 25 (1): 82-97.

Hutchinson, J. (1967) The Genera of Flowering Plants. Oxford University Press, Oxford.

Iltis, H. (1913) U¨ ber das gynophor und die Fruchtausbildung beider Gattung Geum. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 122: 1-36 .

Juel, O. H. (1918) Beitrage zur Blu¨ tenanatomie und zur Systematik der Rosaceen. Kungl. Svenska vetenskapsakademiens handlingar 58: 1-81.

Kalkman, C. (2004) Rosaceae: 13. Alchemilla group. In: Flowering Plants. Dicotyledons: Celastrales, Oxalidales, Rosales, Cor nales, Ericales (Ed. Kubitzki, K.) 371-372. Springer, Berlin.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.

Linnaeus, C. (1753) Species Plantarum. Laurentius Salvius, Stockholm.

Lundberg, M., Topel, M., Eriksen, B., Nylander, J. A. and Eriksson, T. (2009) Allopolyploidy in Fragariinae (Rosaceae): comparing four DNA sequence regions, with comments on classification. Molecular Phylogenetic and Evolution 51(2): 269-280.

Metcalfe, C. R. and Chalk, L. (1957) Anatomy of the Dicotyledons. vol. 1. Oxford at the Clarendon Press, Oxford.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, USA.

Morgan, D. R., Soltis, D. E. and Robertson, D. E. (1994) Systematic and evolutionary implication of rbCLsequence variation in Rosaceae. American Journal of Botany l(12): 890-903.

Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. and Nieves Aldrey, J. L. (2004) Bayesian phylogenetic analysis of combined data. Systems Biology 53: 47-67.

Page, D. M. (2001) TreeView (Win32) Version 1.6.6. Retrieved from http://taxonomy.zoology.gla.ac.uk/rod. On: 3 September 2001.

Posada, D. and Buckley, T. R. (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793-808.

Robertson, K. R. (1974) The genera of Rosaceae in the southeastern United States. Journal of the Arnold Arboretum 55: 611-662.

Ronquist, F., Mark, P. and Huelsenbeck, J. P. (2009) Bayesian phylogenetic analysis using MrBayes. In: The Phylogenetic Handbook. 2nd ed. (Eds. Lemey, P., Salemi, M. and Vandamme, A. M.) Cambridge University Press, Cambridge.

Ronquist, F., Teslenko, M., Mark vander, P., Ayres, L. D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, A. M. and Huelsenbeck, P. J. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542.

Rydberg, P. A. (1913) Rosaceae. In: North American Flora. vol. 22(5). The New York Botanical Garden, New York.

Sang, T., Crawford, D. J. and Stuessy, T. F. (1995) Documentation of reticulate ribosomal DNA implications for biogeography and concerted evolution. In: Proceedings of the National Academy of Sciences of the United States of America, USA.

Schönbech-Temesy, E. (1969) Rosaceae, Geum. In: Flora Iranica (Ed. Rechinger, K. H.) 66(30) 4: 116-121. Akademische Druck-U Verlagsanstalt, Graz.

Schulze-Menz, G. K. (1964) Rosales. In: A. Engler’s Syllabus der Pflanzenfamilien (Ed. Melchior, H.) 193-242. Gebru ¨der Borntraeger, Berlin.

Shaw, J. B., Lickey, E. E., Schilling, E. and Small, R. (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany 94: 275-288.

Silvestro, D. and Michalak, I. (2012) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335-337.

Smedmark, J. and Eriksson, T. (2002) Phylogenetic elationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Systematic Botany 27(2): 303-317.

Smedmark, J. E. E., Eriksson, T., Evans, R. C. and Campbell C. S. (2003) Ancient allopolyploid speciation in Geinae (Rosaceae): evidence fromnuclear granule-bound starch synthase (GBSSI) gene sequences. Systematic Biology 52: 374-385.

Smedmark, J. E. E., Eriksson, T. and Bremer, B. (2005) Allopolyploid evolution in Geinae (Colurieae: Rosaceae): building reticulate species treesfrom bifurcating gene trees. Orgnism Diversity and Evoltion 5: 275-283.

Smedmark, J. and Eriksson, T. (2006) Early stage of development shed light on fruit evolution in allopolyploid species of Geum (Rosaceae). International Journal of Plant Science 167(4): 791-803.

Swofford, D. L. (2002) PAUP, Phylogenetic Analysis Using Parsimony, version 4.0b10. Sunderland Massachusetts Sinauer Associates Sunderland, Massachusetts.

White, T. J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA gene for phylogenetics. In: PCR protocols: a guide to methods and amplifi- cations (Eds. Innis, M., Sninsky, J. and White, T.) 315-322. Academic press, Sand Diego.

Zhang, S. D., Jin, J. J., Chen, S. Y., Chase, M. W., Soltis, D. E., Li, H. T., Yang, J. B., Li, D. Z. and Yi, T. S. (2017) Diversification of Rosaceae since the late cretaceous based on plastid phylogenomics. New Phytologist 1-13.